A Family of Number Fields with Unit Rank at Least 4 That Has Euclidean Ideals

نویسندگان

  • HESTER GRAVES
  • Matthew A. Papanikolas
چکیده

We will prove that if the unit rank of a number field with cyclic class group is large enough and if the Galois group of its Hilbert class field over Q is abelian, then every generator of its class group is a Euclidean ideal class. We use this to prove the existence of a non-principal Euclidean ideal class that is not norm-Euclidean by showing that Q( √ 5, √ 21, √ 22) has such an ideal class.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields

This paper investigates the arithmetic of fractional ideals of a purely cubic function field and the infrastructure of the principal ideal class when the field has unit rank one. First, we describe how irreducible polynomials decompose into prime ideals in the maximal order of the field. We go on to compute so-called canonical bases of ideals; such bases are very suitable for computation. We st...

متن کامل

Infrastructure, Arithmetic, and Class Number Computations in Purely Cubic Function Fields of Characteristic at Least 5

One of the more difficult and central problems in computational algebraic number theory is the computation of certain invariants of a field and its maximal order. In this thesis, we consider this problem where the field in question is a purely cubic function field, K/Fq(x), with char(K) ≥ 5. In addition, we will give a divisor-theoretic treatment of the infrastructures ofK, including a descript...

متن کامل

On Well-rounded Ideal Lattices

We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study ...

متن کامل

ON WELL - ROUNDED IDEAL LATTICES 3 Theorem 1

We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study ...

متن کامل

Euclidean Ideals in Quadratic

— We classify all quadratic imaginary number fields that have a Euclidean ideal class. There are seven of them, they are of class number at most two, and in each case the unique class that generates the class-group is moreover norm-Euclidean.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013